History of the Cal Timesharing

System

Paul McJones
paul@mcjones.org

David Redell
dave.redell@gmail.com

Abstract—The CAL Timesharing System (CAL TSS) was developed at the University of California
at Berkeley between 1968 and 1971 to provide interactive computing for research and instruction.
It ran on a mainframe computer, the Control Data Corporation 6400, and was one of the earliest
systems to use capabilities for protection. We discuss the origin of the project, development of
the software, and the brief experience using the system before it was shut down in May 1972.

This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible.

Background

M IN 1966 the Computer Center of the Univer-
sity of California at Berkeley was once again out-
growing its computing resources. Since its found-
ing in 1956, the Computer Center had operated a
series of International Business Machines (IBM)
scientific computers, the latest of which was a
7094-7040 Direct Couple System (with the much
slower 7040 as an Input/Output front end for the
7094).! Computer use was becoming widespread
in courses and for graduate and faculty research
across many departments. System load projec-
tions predicted saturation within a year, and users
with large data sets were already frustrated with
the 7094’s memory size of 32,768 36-bit words
(about 147,000 8-bit bytes). The Direct Couple
System was primarily batch oriented, running
jobs submitted via punched cards or remotely
via IBM’s Scientific Terminal System. Limited
interactive service, in the form of IBM’s Quiktran,
was available three hours a day.

Acquiring the hardware
The Computer Center staff and advisory com-
mittee studied the available large-scale comput-

I'The full series was: 701 in 1956, 704 in 1959, 7090 in 1962,
7094 in 1964, and DCS in 1965.[43] [66]

ers, including the IBM 360/67 and 360/75, the
General Electric GE-635, the Univac 1108, and
the Control Data Corporation (CDC) 6000 series.
One consideration was support for interactive as
well as batch computing.

The GE and Univac offerings were eliminated
in the first round of selection. IBM and CDC each
submitted proposals. IBM proposed the 360/67
and indicated that a timesharing system was under
development; they promised delivery of the hard-
ware in June 1967. CDC proposed a 6400% with
Extended Core Storage (ECS), which was a large
core storage unit that supported high-speed (ten
60-bit words per microsecond), low-latency (4
microseconds) transfers to or from main memory’
but was not addressible for instruction fetch or
data load/stores. They promised delivery of a
basic system that fall.

In April 1966, Computer Center Director
Abraham Taub* sent Chancellor Roger Heyns a

2The 6400 was instruction set compatible with the record-
setting 6600, but executed instructions sequentially, lacking the
6600’s parallel functional units and instruction stack.

3Thus a program of 10,000 words or about 30,000 instructions
could be swapped into central memory in one millisecond.

4Abraham Taub (1911-1999) was a mathematician and physi-
cist. At the University of Illinois from 1948 to 1964 he was
involved with the ORDVAC and ILLIAC I computers and later
headed the Digital Computer Laboratory. [43]

January 14, 2023

memorandum describing the planning that had
been done and requesting approval of proposed
budgets for academic years through 1969-1970;
these budgets hypothesized a large National Sci-
ence Foundation (NSF) grant for Computer Fa-
cilities. [64] The memo described both the IBM
and CDC proposals in some detail; the decision
to purchase a CDC system seems to have been
made shortly thereafter. In May, CDC wrote a
letter to Taub detailing a proposed configuration,
with a delivery date in November 1966. [50]

The next six months were filled with intense
negotiations between the Computer Center, CDC,
NSF, and the University itself. The Computer
Center worked with CDC to configure an appro-
priate system, settling on two 32K-word 6400
CPUs, a 500K-word ECS, a disk drive, tape
drives, printers, card reader and punch, etc. Se-
lecting the disk drive was complicated by the fact
that CDC’s new 6638 wouldn’t be available by
November, so Berkeley agreed to rent an older
6603 in the interim. The second CPU and the
ECS were to be shipped in July 1967, and the
6638 disk was to ship in September 1967.

The Berkeley Chancellor’s Office made pre-
sentations to the Regents of the University of
California and obtained permission to acquire the
full set of CDC equipment, to borrow $970,000
to pay for the November deliverables, and to
apply to NSF for a grant. Interestingly, part of
the justification to the Regents for buying the
CDC system was that it “offers us an opportunity
to pursue a novel approach to time-sharing”—
namely, the use of ECS for fast transfer of pro-
grams to and from main memory. This was felt to
make NSF more likely to support Berkeley’s grant
proposal. [39] Section VI.3 of the grant proposal
was “An Outline of the Projected Time-Sharing
and Batch Processing System Using the C.D.C.
6400/6400 Equipment.” [66] It pointed out that a
large program filling the entire central memory
could quickly be transferred to or from ECS,
whereas the rotational latency and lower transfer
rate of a swapping drum made it advisable to opti-
mize CPU utilization by dividing central memory
between two smaller programs: one being exe-
cuted and one being transferred in or out. The
anonymous author (probably Taub or Associate

Director Martin Graham?) also discussed the lack
of paging or segmentation hardware. While this
meant it was not possible to have a larger virtual
address space than the size of physical memory,
it was felt that traditional overlay techniques,
implemented via fast, direct transfers between
central memory and ECS by the user program,
would make up for this.

The Chancellor’s Office also negotiated with
CDC on the price. CDC had initially proposed
a 20% educational grant and a 10% research
grant to help fund Berkeley’s development of
timesharing software for the 6400. They retracted
the research grant offer [17] and instituted across-
the-board price increases, but offered Berkeley
a compute time buyback deal that preserved the
prices informally agreed upon in May. [65]

Taub’s NSF grant proposal [66] requested
$2,010,384 over 4 years in order to purchase the
CDC equipment, “develop and maintain a novel
time-sharing system for the campus using the dual
C.D.C. 6400 computers and the extended core
storage,” and maintain and operate the equipment
for a period of 4 years. Instead, NSF eventually
issued Award 67P7635 in the amount of $1 mil-
lion over 3 years starting in 1967; it was restricted
to “Purchase of Computing Systems.” Later it
was amended to allow grant money to be used
to subsidize educational and research users who
lacked funds to pay for computer time.

Launching the timesharing project
Although the first hardware (the A machine)
arrived on schedule in November 1966, the Com-
puter Center wasn’t immediately able to begin
work on a timesharing system. For seven years
(since the arrival of the IBM 704), users had
become accustomed to IBM’s customary smooth
evolutionary improvement and backward compat-
ibility despite a series of hardware upgrades. To
squeeze out more performance, users had written
many library programs in assembly language.
Suddenly there was an incompatible (albeit much
faster) CPU and immature system software. With
unhappy users complaining, the Computer Center
programming staff spent a number of person-

SMartin H. Graham (1926-2015) began his career at the
Brookhaven National Laboratory, and then became a professor
at Rice University, where he led a project to build the Rice R1
computer before coming to Berkeley in 1966.

years improving CDC’s system software and
helping users rewrite their applications. [27]

Two Computer Center programmers, Howard
Sturgis® and Dave Redell,” had previously mod-
ified IBM’s Scientific Terminal System (STS) to
work with relatively inexpensive Teletype termi-
nals. (STS allowed batch jobs to be submitted
from a remote terminal, but did not offer services
such as text editing or interacting with a running
program.) This time they started from scratch
on a Remote Terminal System (RTS) providing
comparable functionality for the CDC system,
building their application logic on what would
now be called a thread scheduler, patterned after
one that had been written for a PDP-5 as part
of Project Genie. It’s clear that Sturgis was also
thinking about the challenges of building a time-
sharing system. As early as May 1967 he wrote a
four-page memo describing a simple timesharing
system that would be able to execute compilers
and user programs written for CDC’s SCOPE
batch operating system via an adapter to a new
file system. [52]

By November 1967 RTS was far enough along
that Sturgis could think more about the time-
sharing system.® He wrote a memo describing “a
basic time sharing system” that seemed more an
experiment in specification style than a specific
proposal. It used terse prose descriptions of ob-
jects (data block, user process, system process),
their abstract state, and operations defined on
each object type. [53] The actual system described
was perhaps a hypothetical reinterpretation of
RTS as a program running on the 6400 Central
Processing Unit (CPU) rather than on a Peripheral
Processing Unit (PPU), as in RTS and SCOPE.
The PPUs were small computers that could di-
rectly access input/output (I/O) devices, transfer
data to and from Central Memory, and control
the Central Processing Unit, which could not
directly access I/O devices. In Sturgis’s design,
one component of a process was a map that
specified how to transfer words from data blocks

®Howard Ewing Sturgis (1936-1990) had been a graduate
student in mathematics at Berkeley, but took an extended leave
of absence to work at the Computer Center.

"David D. Redell (1946-), who is the second author of this
paper, was in his final year of an AB in the new Computer Science
field major.

8Redell had started graduate school that fall under a fellowship
that precluded working at the Computer Center.

in ECS to the process in Central Memory, and
then optionally back to the data blocks. This was
useful since the 6400 Central Processing Unit
had only a single (base, bounds) register pair to
allow relocation and protection of the running
user program. System processes represented I/O
devices, so I/O could be done with process syn-
chronization primitives (block and wakeup) rather
than interrupts. An example was given of reading
and writing to a low-speed terminal, with code
written in Fortran.

Around this time Taub resigned as Computer
Center Director, returning to full time as a pro-
fessor in the Mathematics Department. Graham
agreed to serve as Acting Director on a tem-
porary basis. Apparently he agreed with Stur-
gis about starting the timesharing project, be-
cause on February 20, 1968 Sturgis circulated
a short project description with a cover note
saying “This is the proposed body of a letter
from Prof. Graham’ to myself (HES). He wants
approval or comments from Ken Hebert'® [and]
Gene Albright.”!! [54] The plan involved three
phases: six months of design with 2 people,'?
one year to implement a limited system with 4-
5 full-time people, and a better system involving
another year or two with the same staffing. The
limited system was to allow interactive editing
and execution of user programs plus RTS-style
support of remote printers, with all compilation,
assembly, and linking taking place on the batch
system (the other 6400). There would be a “pre-
liminary permanent file system,” although this
was followed by a question mark. The better
system would extend this to more users, execution
of large programs including compilers, etc., batch
service, and a better permanent file system. It
seems this was intended to replace CDC’s SCOPE
operating system running on the A machine,
because its requirements included both 6400s
and all the ECS and disk storage. Starting a
week later, Sturgis began a series of short design
memos. Perhaps most interesting was one titled
“Capabilities, basic objects” [55] since the use of
capabilities—unforgeable references to operating
system objects—was to characterize the design of

9But presumably actually written by Sturgis.
10Kendrick J. Hebert was Assistant Manager.
"1Gene Albright was Chief Programmer.
12Starting “after completion of RTS”.

the eventual system.

While Sturgis was eager to begin, Graham
realized he needed support from the Chancellor’s
Office. He’d hoped that a new Director could take
over, but with no appointment having been made
by May, he took action. First he called a meet-
ing with Butler Lampson'® and Peter Deutsch,
who had jointly developed the operating sys-
tem for the Project Genie SDS 940 system. [30]
The Computer Center was represented by Hebert
(who would become Acting Director), Albright,
Sturgis, and two younger programmers: Allen
Ginzburg and Bruce Lindsay.'* Next Graham
wrote a memo to Vice-Chancellor for Research
Loy L. Sammet, noting the willingness of Lamp-
son and Deutsch to “collaborate with the Com-
puter Center in designing the system.” [19] Gra-
ham proposed to fund three full-time program-
mers for one year, and to investigate additional
hardware needed up to $80,000. At that time
the Computer Center’s finances were excellent,
with multiple income sources from state and
federal sources matching the 1966 projections,
and Sammet confirmed Berkeley’s commitment
to staff the project. [48] [40] This meeting led to
further discussions between Lampson, Graham,
Hebert, Sammet, and CDC over the next few
months. CDC agreed to install without charge
the Central Exchange Jump option on Berkeley’s
second 6400 (see below) and held out the possi-
bility of additional hardware through a research
grant if Lampson was “directly attached to the
project.” [51] That was not feasible, but he con-
tinued as co-designer and advisor. (Deutsch was
not further involved.)

Designing the ECS system

In July 1968 the project got underway with
Lampson as faculty sponsor and Sturgis and
Lindsay as full-time staff. A series of design
memos appeared starting in midmonth and run-
ning through September. The first two (by Sturgis,
as were most of the series), were terse but already

3Butler W. Lampson (1943-) received an AB from Harvard
University in 1964 and a PhD in EECS from the University
of California at Berkeley in 1967. After a year as an Assistant
Professor in EECS, he joined Berkeley’s new Computer Science
Department.

4Bruce G. Lindsay (1945-) received an AB from the Univer-
sity of California in 1967. He began working at the Computer
Center with Professor Rene DeVogelaere on his Active Language
Calculator.

suggested the design that would emerge over
the coming months: “Map, operation, capability,
objects” [56] and “Process, subprocess.” [57]

The design was described in terms of abstract
object types and the operations (actions) that
could be performed on them. Objects were stored
in ECS and accessed via capabilities, which were
stored in capability lists. A process was sub-
divided into multiple protection domains called
subprocesses, each with its own capability list
and map to control swapping of its address space
to and from files. Processes could also read and
write files, and could send and receive one-word
messages on event channels. Operations were
themselves objects, and so could be controlled
by capabilities. Allocation blocks imposed an
ownership tree on all objects, and controlled and
accounted for the usage of ECS space and CPU
time.

Many of these ideas, and especially capabil-
ities, can be traced back to the work of Dennis
and Van Horn [12].13 Dijkstra’s paper [13] on the
THE system, with its emphasis on a hierarchical
design, was another inspiration.!® Lampson and
Sturgis combined these ideas in an interesting
way: the lowest layer, called the ECS system,
would provide the basic facilities necessary to
support the higher layers, including mechanisms
such that the higher layers could be efficiently
implemented in a distributed fashion as protected
domains within each user process.'” Many sys-
tem calls could be handled directly by the ECS
system, but infrequent cases would cause a so-
called FRETURN (failure return, borrowed from
SNOBOL [16]) from the ECS operation, to be
handled by a subprocess implementing a higher
layer. Several mechanisms were required to make
this work. Operations could have multiple layers,
typically starting with an ECS action, followed
by one or more subprocess call layers that were
only invoked after an FRETURN by the previous

3They in turn say: “Our notion of the capability list stems
from the ‘program reference table’ idea first used in the Bur-
roughs B5000 system.” Interestingly, they credit the Rice Com-
puter Project, [28] started by Martin Graham, as well as Bur-
roughs for influencing their segmentation design.

16 A5 secondary sources, Sturgis’s thesis [63] also notes Robert
Fabry’s work on a capability-oriented system at the University of
Chicago [15] and the Multics operating system’s mapped address
spaces, protection regions within processes (Multics rings), and
distributed system code. [11]

"Designs like this would come to be known as microkernels.

layer. ECS files could have “holes” representing
portions not currently resident in ECS; part of
the representation of an open disk file was such
an ECS file. So it was important for this initial
design process to anticipate the needs of higher
layers (disk files, directories, command processor,
debugger, etc.) that would be designed later.

There had been a question of whether the
existing hardware was sufficient. While CDC’s
SCOPE operating system ran in the PPUs, which
could perform an Exchange Jump to switch the
CPU from one user program to another, as much
as possible of the new system would run on the
CPU. Thus Berkeley wanted CPU programs to
be able to initiate an Exchange Jump to make
a system call; this required the CEJ/MEJ option
that CDC had agreed to include for the second
machine.'® A serial line multiplexor for use with
asynchronous terminals such as Teletype Models
33 and 35 had been designed for RTS and would
be used with the timesharing system.!”

In August 1968 the Extended Core Storage
was finally installed on the A machine. (In De-
cember 1967 an additional 32K-word memory
module and the 6638 disk subsystem had been
installed.) In January 1969 the second 6400—
the B machine—was finally installed. It had 32K
words of central memory. Both machines were
connected to the ECS (split 200K/300K words
for the A and B machines) and the 6638 disk
subsystem (17M words split evenly for the two
machines).

At the end of October the complete design
emerged as an elegant series of specification
memos including all the object types and major
functionality of the eventual ECS system. [58]
This was an impressive accomplishment given
the small number of person-months expended. It
also represented a major escalation from the ap-
proach of Sturgis’s May 1967 [52] and February
1968 [54] memos: rather than build a conservative
system, he would apply and extend the latest ideas

18CDC declined to provide two other options: a way for PPUs
to directly access ECS and an additional read/write control unit
for the 6638 disk subsystem.

9The multiplexor was designed by David J. Wheeler, on
sabbatical from Cambridge University, with contributions by
Graham.

in operating system research.?’

Implementing the ECS system

With specifications in hand, detailed design
and implementation began. At this time the Com-
puter Center system programming staff worked in
an annex (no longer present) to South Hall, and
design meetings were held in Lampson’s office
in Cory Hall. By October 8, 1968?! Sturgis and
Lindsay had been joined by Karl Malbrain®> and
Charles Simonyi.?® Simonyi and Paul McJones**
had been working since spring 1968 on CAL
SNOBOL.> By fall they were finishing that
project, and Lampson recruited Simonyi to join
the timesharing project. Simonyi designed sev-
eral ECS system structures, but quickly decided
to pursue another job off campus and recruited
MclJones to complete his designs.?®

Programs were written in CDC’s COMPASS
assembly language, keypunched by the program-
mers, and assembled and linked with batch jobs
on SCOPE. Malbrain had previously written a
CPU simulator as a debugging tool; it was com-
bined with a PPU simulator written by Sturgis
to allow simulation of the entire system, which
was especially useful because the actual hardware
had no traditional front panel allowing access to
memory and registers.

Sturgis wrote the PPU code (initial load,
master loop, I/O drivers) and low-level CPU
code (ECS allocation, interrupts, initial process).
Lindsay wrote the central CPU code (process
object, scheduler, swapper, system entry/exit) and
other objects (subprocesses, event channels, allo-
cation blocks). McJones wrote more actions (ca-
pability lists, files, subprocess maps, operations).
Malbrain wrote the interim command processor,

20[n a 2021 interview with the authors, Lampson said, “But
there’s no doubt what the inspiration was for many of the things
in the system. And it was Howard. Not me.” [35]

21 A design note from that day lists tasks for the four people.

22Karl Malbrain (1950-) was a second-year undergraduate in
Electrical Engineering and Computer Science (EECS).

23 Charles Simonyi (1948-) was also a second-year engineering
undergraduate. He came to Berkeley from Hungary by way of
Regnecentralen in Denmark, where he’d worked with Per Brinch
Hansen on the RC 4000 and Peter Naur on GIER Algol.

24Paul R. McJones (1949-), who is the first author of this
paper, was a second-year undergraduate in EECS.

23A SNOBOLA4 dialect for the 6400; see [41].

26In December 1968 Simonyi joined Malbrain in a rushed
cross-country drive to witness the Apollo 8 launch, foretelling
Simonyi’s later space travel.

called the Bead, and the SCOPE simulator that
allowed SCOPE programs such as compilers to
run on the ECS system. Keith Standiford,”” who
joined the project in the spring, began by writing
a command program to send files to the printer.

Around this time two people from the
new Computer Science Department “unofficially”
joined the project: Jim Gray®® and Jim Morris.?’
Gray’s initial project was the line collector, which
allowed the user to make corrections by typing
control characters while the program was read-
ing a line from the teletype. Gray also defined
the standard representation for text, which was
based on 7-bit ASCII (rather than CDC’s 6-bit
Display Code). Morris’s initial project was a line-
oriented text editor. While working on the editor’s
search command, he conceived of the initial idea
for the Knuth-Morris-Pratt string-searching algo-
rithm [29] as a way to avoid backing up in the
search, which would have been awkward because
he was only maintaining a single file buffer. [44]

The interim system

By the summer of 1969 enough of the ECS
system existed to allow a public demonstra-
tion: editing, compiling and execution of For-
tran programs from two teletypes simultaneously.
Around that time the timesharing staff moved
from crowded South Hall Annex to two apart-
ments in an old university-owned building at
2515 Channing Way. A milestone was reached:
development of the system on itself now began,
using the SCOPE simulator to run the assembler
and linker. The B machine was shared with the
SCOPE system programmers on a fixed daily
schedule, requiring dumping and reloading the
ECS file system to magnetic tape.

Redell returned to graduate school after a one-
year hiatus and joined the team, working with
Lindsay—their first project was documentation.

27Keith P. Standiford (1949-) was a second-year undergraduate
in Electrical Engineering and Computer Science.

28James N. Gray (1944-lost at sea in 2007) received his BS
and PhD from the University of Californa at Berkeley in 1966
and 1969, respectively. From 1969 to 1971, he was an IBM Post
Doctoral Fellow in the Berkeley Computer Science Department.

2James H. Morris, Jr. (1941-) received a BS from Carnegie
Tech and an MS and PhD from MIT. In January 1969 he
became an Assistant Professor in the Berkeley Computer Science
department.

In October Vance Vaughan®® joined the team,
taking over completion and maintenance of the
ECS system. Late that year Gene McDaniel®!
joined the team, initially working with Vaughan
on tests and measurements for the ECS system.

In parallel with these activities, there was a
behind-the-scenes effort to find a new academic
sponsor. Lampson continued to advise the group
until he left Berkeley to join Xerox Palo Alto
Research Center around January 1970, but in ad-
dition to his teaching duties, the company he had
co-founded?? had been taking increasing amounts
of his time. By July, Hebert had invited Gray
to become project director. Gray’s PhD advisor,
Computer Science Professor Michael Harrison,
wrote to Hebert on August 1 to recommend
Gray, but warned of the need for the Univer-
sity to show its commitment to provide support
for completing the timesharing system.[26] A
month later Sammet wrote to Hebert, expressing
pleasure at Gray’s interest and assuring Hebert
of his continued support of the project, men-
tioning “I have in mind that the work will also
be directed toward providing documentation and
personnel skills necessary to keep the program
fully operative once it is developed.” [49] (That
summer the Computer Center had assigned Mar-
ianne Bentley®® to assist with documentation.)
In October, Gray’s new role was marked by the
publication of “An Overview of the CAL Time-
Sharing System.” [32] It combined a paper that
Lampson had just presented at the second NATO
software engineering conference [31] with Gray’s
first quarterly progress report. [20]

First users

In January 1970 Sturgis completed an interim
facility for using the disk. [21] [59] This involved
an I/O interface to the disk and a command-level
program running under the Bead. I/O interfaces in
general consisted of a PPU program that commu-

30Vance Vaughan (1939-) came to Berkeley in 1957 as a
freshman, received his BA in 1963 and his MA in 1966; along
the way, he worked as an operator for the IBM 701 and then as
programmer and research assistant in the Astronomy department.

31Gene A. McDaniel (1948-) was a fourth-year undergraduate
in psychology and computer science.

32Berkeley Computer Corporation was building a large time-
shared machine based on experience with Project Genie. [33]

33Marianne Bentley (1944-) received a BA in mathematics
from Smith College in 1965. She began working at the Computer
Center around 1968.

nicated with the device hardware and a pseudo-
process (low-level CPU code) that interfaced be-
tween the PPU program (which could only read
and write buffers in central memory) and pro-
cesses (which could only send and receive events
on event channel objects and read and write ECS
files). [3] The interim disk program implemented
a simple disk file system and allowed users to
transfer complete ECS files to or from this file
system.

At this point, the system could support “nearly
10” users, [63] who could be editing large text
files and assembling them on the SCOPE sim-
ulator, although close cooperation by the users
was necessary to manage their use of ECS space.
Neither the Bead nor the interim disk program
provided file access controls. But the increased
capacity of the disk over the ECS eased fur-
ther development of the timesharing system and
allowed several people from the Computer Sci-
ence Department to be invited to use the system
on an experimental basis, taking advantage of
the programming documentation (see [4] and
[5]) recently completed by Bentley, Lindsay, and
Redell. In 1969 Morris had ported the BCPL
programming language to the 6400 running on
the A machine, assisted by undergraduate Richard
Aronoff. Now he made BCPL available as a na-
tive subsystem on the timesharing system. [46] As
her introduction to the system, Instructor Laura
Gould** wrote a program to convert a SCOPE
text file to an ASCII text file. Later in the year,
Morris’s undergraduate student William Bridge®
designed an implementation of the BASIC lan-
guage. It was fully interactive on CAL TSS, and
could also be used in batch mode under SCOPE
on the A machine. Bridge used BCPL as the
implementation language. [9]

Malbrain and McJones had taken a hia-
tus from timesharing development to design an
assembly language programming system with
PL/360-like syntax, a loader, and a debugger,
but this project dragged out and was never fin-
ished. [37] SNOBOL was useful for writing text-
processing programs, so McJones added teletype

34Laura E. Gould née Lehmer (1932-) was a researcher and
instructor.

3Swilliam H. Bridge (1948-) received his AB in Computer
Science at Berkeley in 1970 and went on to graduate school,
also joining the Computer Center.

IN() and OUT() procedures to CAL SNOBOL,
although it still had to be run under the SCOPE
simulator.

Designing the disk system

To complete the timesharing system, several
more layers were needed: permanent disk files
coordinated with the ECS file system, directories,
and an executive layer with a command processor,
basic debugging, and accounting; collectively this
was referred to as “the disk system.” Sturgis was
the system architect. Lindsay and Redell were
responsible for disk files, McJones for directories,
and Sturgis for the command interpreter and other
facilities. Standiford began work on a display
driver that allowed use of the dual-display op-
erator’s console to examine and modify central
memory and ECS; he also virtualized the display
to allow a user process to access the display
and keyboard. Vaughan and McDaniel continued
finishing up details of the ECS system. [22]

By summer of 1970, the disk and directory
system designs were completed and implementa-
tion had begun. The ECS system was now com-
plete except for some final I/O interfaces. Based
on the accumulated experience, some redesign
and reprogramming of the ECS system began.
Sturgis began working in earnest on the executive
layer design. [63]

At this time there was another personnel
change: Gray resigned as director.[23] Gray’s
quarterly progress reports (see [20]-[23]) show
a steady shift from optimism (“We are confident
that TSS will gracefully support 100 student users
when it is complete.”) to pessimism (“The job is
thankless, draining, mundane, and unpleasant.”)
over a nine-month period. In his defense, he
was dealing with a programming team made up
largely of volunteers and students who juggled
work with their studies in an atmosphere colored
by political protests.*® Sturgis gamely assumed
the directorship and served in that role for the
remaining eighteen months of the project.

First student users
Gray’s final progress report announced the
intention of releasing initial versions of the new

36President Nixon’s invasion of Cambodia that spring had led
to widespread demonstrations and the Kent State shootings.

disk file and directory systems by fall. [23] Inter-
nal memos cited this “September system,” listing
features including a TSS batch system for student
“load and go” jobs and enumerating required
tasks. [69] [38] [68] Completion of the “Septem-
ber system” stretched into the following year
(and the batch system was never written), but
an important milestone was reached that fall. As
Sturgis noted in his first progress report: [60]

As an experiment, in the Fall of
1970, 8 students from an elementary
programming class were allowed the
use of the system for one hour a day, 5
days a week. In these 5 weekly hours
the 8 students were able to do the
week’s assigned programs, usually with
time to spare. The 8 students placed
so little load on the system that it is
suspected we could have handled 16
students.

The limitations of this temporary
system stem from the fact that if a
program is manipulating a file, the en-
tire file must reside in ECS. Thus ECS
rapidly fills up as more users attempt
to use the system simultaneously. Other
limitations are: the Bead command pro-
cessor provides no protection between
users, any user may access and modify
any other user’s files; no accounting
information is collected; finally, there is
no facility for forcing large programs to
reside on the disk part of the time.

The course was Gould’s CS120A, Com-
puters in the Humanities, taught using CAL
SNOBOL. [7] Another limitation not mentioned
by Sturgis was that users were expected to manu-
ally request and release ECS space as they entered
and exited from subsystems. For example, to edit
a file, the user would type:

TRIM
SPACE, 5000
C,EDITOR, S, <fname>, <user>

and then after exiting the editor would invoke the
TRIM command again to return any unused space
to the common pool.

Morris, pining after MIT’s much more pol-
ished Compatible Timesharing System, [42][72]

wrote “The Idiot’s Guide to TSS.7[45] The
next quarter, Gould again used the timesharing
system for CS120B; this time there were 12
students. And in the spring 1971 quarter, she
taught 60 or more CS1 (“Computers and Data
Processing”) students using Basic. [18] Two other
professors used the system to teach additional
courses using Basic and Fortran. An evaluation
by Vaughan published in August 1971 (see Ap-
pendix B of [61]) indicated that both students and
teachers found timesharing to be preferable to
batch computing. Students spent less time, and
teachers found they could give more advanced
assignments. This was in spite of the poor docu-
mentation, complex commands, limited access to
teletypes, etc.

The final system

1971 began auspiciously for the Computer
Center with a move to the second floor of newly
finished Evans Hall, consolidating administration
from Campbell Hall, the batch system from South
Hall Annex, and timesharing from Channing Way.
The computers would not arrive (from the Camp-
bell Hall basement) until October. The brutalist
12-story concrete structure was conveniently lo-
cated and the move seemed to signal that time-
sharing was becoming mainstream.

Another change doesn’t seem to have regis-
tered with the timesharing project members: the
Computer Center was reclassified as a service
unit, losing the status as an Organized Research
Unit that it had enjoyed since its founding in
1959.% Although there was no immediate out-
ward impact, it meant the Computer Center could
no longer initiate projects like CAL TSS.

By this time many parts of the new disk,
directory, and executive layers were running, and
utilities were available for using the card reader
and (single) tape drive. On February 27, Sturgis
and Hebert met with the Subcommittee on Time
Sharing of the Chancellor’s Advisory Committee
on Computing, promising that “after March 15
and before the start of the Spring Quarter,” the
updated timesharing system would be available
to general users from 2pm to 6pm each day.
[73] Approximately ten teletypes would be made

3T The title, inspired by a popular how-to guide for Volkswagen
repair, was a barb directed at the CAL TSS designers. [44]
38This was a University-wide change; see [67].

available in the Computer Center, and users could
could have their own teletypes connected to the
system (hardwired rather than via dial-up lines).
A financial analysis that assumed the system
could support 100 teletypes®® estimated that the
cost would be $2 per user hour. The Subcom-
mittee concluded: “Therefore, the proposed time
sharing system appears to be very economical
compared to commercial systems.”

There was a mad dash to straighten out last-
minute problems, [70] and the system was made
available on March 16. In May a major revision of
documentation was released. [6] An introductory
document featuring annotated command sessions
shows the complexity faced by users.[8] Work
continued over the following months, adding im-
portant features and measuring and tuning the
system, with roles shifting to address the highest
priorities. Bridge and McDaniel began working
with Sturgis on the executive layer. Vaughan
continued to maintain the ECS layer, but also
assumed the role of “user interface,” talking to po-
tential users, creating additional documentation,
and troubleshooting the entire system. Another
milestone occurred at the end of July, when
disk space quotas were completed. This required
remaking all the directories; once this was done,
the timesharing programmers moved their files
over from the Bead-based interim system to the
new system, sharing it with the users (but during
off-prime hours). [61]

The critical resource was ECS, only 300,000
words of which were available to the timesharing
system—the equivalent of about 2,250,000 bytes.
This modest storage device held all the system
code and tables as well as the active parts of
all the user files. In May, Sturgis and Vaughan
had done detailed measurements of ECS usage,
which they divided into three categories: system
overhead shared by all processes; per-process
fixed overhead, and per-process space for active
parts of open files. In a report on the state of
the system at the end of July, Sturgis noted it
could support a maximum of 15 teletypes (users);
he extrapolated that with improvements expected
to be implemented by September, and using the
entire 500,000 words of ECS, that number could
increase to 50 teletypes. [61] The report contained

3The actual number was about a dozen at that time.

projections of the impact of planned changes
on ECS usage, showed the feasability of the
available disk storage (about 8 million words—
the equivalent of about 60 megabytes) for a base
of 500 users sharing 50 teletypes over a 10 hour
day, and enumerated a number of additional tasks
to provide a “polished” system.

By October 25 the changes to support ac-
counting had been made and an initial policy
established for pricing the different resources:
$2/hour for connect time, $130/hour for CPU
time, $0.43 per kiloword-hour for ECS space,
and $0.07 per kilosector-hour for temporary disk
space,40 with another $9.40/kilosector-month for
permanent disk space—the A machine was billed
at a flat $400/hour. [62] The system operator’s
instructions now included a daily step to write
the accounting information to a magnetic tape,
where it could be transferred to the A machine
to be punched into cards suitable for input to the
Computer Center’s accounting system.

Another important task was underway: chang-
ing the disk file system to support “forced disk
swapping.” As Sturgis noted: [61]

Programs exist which will compute for
long times between teletype interac-
tions. These programs will hold large
amounts of ECS while computing, thus
preventing more interactive programs
which have released space from con-
tinuing. The forced disk swap is the
system’s method of preventing this sit-
uation. Work on this facility will begin
this summer and should be completed
late this year.

Redell (working alone) designed the complex
logic via “pseudo-code” written in VERS, [14]
a new programming language that had recently
become available on the system. But before he
could finish the actual implementation in assem-
bly language, time—and money—ran out.
Although the Computer Center’s finances had
been excellent in Spring 1968 when the project
was given the go-ahead, that turned out to be
a point of inflection, with revenue from state
and federal sources flattening or dropping from

40A kilosector was about 500,000 bytes or roughly one 1980s
floppy disk.

10

that point onward.*' By 1971, the Computer
Center was running a deficit. While the project
members diligently worked on the timesharing
system, the Computer Center management and
Chancellor’s Office had been privately contem-
plating its fate. By November, they decided to
terminate development of the timesharing system,
sell the B machine, and dedicate the full ECS and
6638 disk drive to the A machine, in the hope
of increasing throughput and thus bringing in
additional revenue. [40] This was communicated
to the timesharing project staff on November 29,
1971.[71]

Aftermath

Development ceased immediately; Hebert’s
request that the state of the source code and docu-
mentation be preserved was not heeded.*? ** The
timesharing system continued to run until May
1972, when the B machine was sold. Berkeley
wouldn’t have timesharing on campus until the
arrival of Unix a few years later.

Gray, during a bleak winter in New York, [25]
wrote an IBM technical report describing aspects
of the system. [24] Sturgis went to work at Xerox
PARC, where his first project was to write his
dissertation, “A postmortem for a time-sharing
system”. [63] In 1976 he and Lampson published
a paper, “Reflections on an operating system
design.” [34] Redell and Lindsay also wrote dis-
sertations based in part on their experience with
the system.[47][36] All agreed it had been a
formative experience.

CONCLUSION

By the mid 1960s the idea of interactive com-
puting was becoming attractive to sophisticated

41 Accurately tracing the causes would require additional re-
search, but would likely involve Ronald Reagan at the state level
and Project Apollo, the Great Society, and the Vietnam War at
the federal level.

“2Perhaps Hebert had reviewed the original 1966 CDC sales
agreement, which stipulated that the University would develop a
timesharing system. CDC was to be assigned a technical contact
and to be provided with final copies of all software documentation
and all reports, but there was no mention of receiving the actual
source code. [10] (This was before IBM’s 1969 unbundling, when
software was not generally considered to be intellectual property.)
In any case CDC never showed any interest in the project.

“Various project members kept their personal files and a
few magnetic tapes; McJones has been collecting this material
since 1980 for donation to an archive. Starting in 2018, Terry
Heidelberg has managed to run snapshots of the interim and final
systems on an emulator.

users of computing, but the necessary timeshared
operating systems were not readily available.
Berkeley’s decision to develop its own time-
sharing system followed similar efforts at MIT,
Dartmouth, and Berkeley itself (Project Genie).
The resultant CAL Timesharing project was torn
between conflicting goals of delivering low-cost
service and exploring interesting research ideas
that could provide advanced functionality. While
the project seemed to be on track to delivering on
both goals, economic conditions forced an early
end to the project. A few later projects experi-
mented with capability-based operating systems,
but the idea has not caught on.

ACKNOWLEDGMENTS

We thank the project members, the three
advisor/directors, Professors Taub and Graham,
Ken Hebert, and the Chancellor’s Office. We also
thank the Bancroft Library and the Charles Bab-
bage Institute. The original project was funded by
the University of California through the Berkeley
Computer Center; additional funding was pro-
vided by Award 67P7635 of the National Science
Foundation and an educational allowance from
Control Data Corporation.

B REFERENCES

1. Records of the Office of the Chancellor, University of
California, Berkeley, CU-149, The Bancroft Library, Uni-
versity of California, Berkeley.

2. Records of the CAL
Lot #2022.0154,
https://CalTSS.computerhistory.org

3. —, “TS Interrupt System,” September 2, 1969, [2],
690902-int-sys.

4. —, “CAL Time-Sharing System Users Guide,” November
1969. Actually, this is the programmers guide, [2], 6911-
users-guide.

5. —, “CAL-TSS Internals Manual,” November 1969, [2],
6911-internals.

Timesharing System,

Computer History Museum.

6. —, “Time-Sharing System Manual,” Part 3 of Volume
Il (The 6400 Computer System) of The Cal Computer
Center Users Guide, May 1971, [2], 7105-tss-manual.

7. —, 1970-1971,” University
of California, Berkeley, p. 220, May 15, 1970.
https://digicoll.lib.berkeley.edu/record/1651

8. Marianne Bentley and Vance Vaughan, “Introduction to
CAL TSS,” July 1971; updated November 1971, [2],
7111-intro-mab-vv

“General Catalogue,

9. [William H. Bridge,] “BASIC,” Section E of Part 4 (Lan-
guages and Processors) of The Cal Computer Center
Users Guide, May 1971, [2], 7105-cal-basic-whb.

10. Control Data Corporation. “Agreement for the sale of
Control Data Equipment,” November 1, 1966, [1], Box 77,
Folder 1.

11. F J. Corbaté and V. A. Vyssotsky, “Introduction and
overview of the Multics system,” In Proceedings of
the 1965 Fall Joint Computer Conference, part I),
Association for Computing Machinery, pp. 185-196.
https://doi.org/10.1145/1463891.1463912

12. Jack B. Dennis and Earl C. Van Horn, “Programming
semantics for multiprogrammed computations,” Com-
mun. ACM vol. 9, no. 3, pp. 143—-155, March 1966.
https://doi.org/10.1145/365230.365252

13. Edsger W. Dijkstra. “The
‘THE’-multiprogramming system,” Commun.
ACM vol. 11, no. 5, pp. 341-346, May 1968.
https://doi.org/10.1145/363095.363143

14. Jay Earley and Paul Caizergue, “VERS Manual Version

structure of the

4”, Computer Science Department, University of Califor-
nia, Berkeley, October 1971, [2], 7110-vers-manual-v4-
je-pc.

15. Robert S. Fabry. “A User’s View of Capabilities,” ICR
Quarterly Report no. 15, The Institute for Computer Re-
search, The University of Chicago, Nov. 1967.

16. D. J. Farber, R.E. Griswold, and I.
The SNOBOL3 Programming Language,

P. Polonsky,

The Bell
System Technical Journal, vol. XLV, no. 6, July-
August 1966, pp 895-944. https://doi.org/10.1002/j.1538-
7305.1966.tb04224.x

17. J. W. Faricy, “Special Allowance - 6400 System: Univer-
sity of California, Berkeley”, memo to R. R. Burns, July
28, 1966. Control Data Corporation Records, Marketing,
Sales and Public Relations (CBI 80), Charles Babbage
Institute, University of Minnesota, Minneapolis.

18. Laura E. Gould, “Instructions for running BASIC on
the CAL Time-Sharing System,” May 1971, [2], 7105-
instructions-for-basic-leg.

19. M. Graham, memo to Vice-Chancellor Loy L. Sammet,
May 16, 1968, [1], Box 121, Folder 9.

20. Jim Gray, “Progress Report on 6400 CAL Time-Sharing
System,” October 11, 1969, [2], 691011-progress-jng.
21. Jim Gray, “(Lack of Visible) Progress Report: CAL-6400-

TSS,” January 15, 1970, [2], 700115-progress-jng.

22. Jim Gray, “CAL Progress Report,” April 15, 1970, [2],
700415-progress-jng.

23. Jim Gray, “Progress Report—CAL-TSS,” June 1, 1970,
[2], 700601-progress-jng.

24. James N. Gray, Butler W. Lampson, Bruce G. Lindsay,

and Howard E. Sturgis, “The control structure of an oper-
ating system,” Technical Report RC 3949, IBM Thomas J.
Watson Research Center, Yorktown Heights, New York,
July 1972, [2], 7207-control-structure-jng.

25. Jim Gray. Oral History Interview with Jim Gray. Charles
Babbage Institute, University of Minnesota Digital Con-
servancy, 2002. https://hdl.handle.net/11299/107339

26. Michael Harrison, memo to Ken Hebert, August 1, 1969,
[1], Box 121, Folder 9.

27. K. Hebert, “CDC 6400 System Development”, memo to
Vice Chancellor Loy L. Sammet, July 18, 1968, [1], Box
121, Folder 9.

28. J. K. lliffe, Jane G. Jodeit, “A dynamic storage

Journal,
1962.

allocation scheme,” The Computer
vol. 5, no. 3, pp. 200-209,
https://doi.org/10.1093/comijnl/5.3.200

29. Donald E. Knuth, James H. Morris, Jr., and Vaughan

R. Pratt, “Fast pattern matching in strings,” SIAM Jour-

November

nal on Computing, vol. 6, no. 2, pp. 323—-350, 1977.
https://doi.org/10.1137/0206024
30. B. Lampson, M. Pirtle and W. Lichtenberger, “A
user machine in a time-sharing system,” Proc. IEEE
vol. 54, no. 12, pp. 1766-1774, December 1966.
https://bwlampson.site/02-UserMachine/Abstract.html
31.

g

Butler W. Lampson. “On reliable and extendable op-
erating systems,” presented at 2nd NATO Confer-
ence on Techniques in Software Engineering, Rome,
September 1969; reprinted in The Fourth Genera-
tion, State of the Art Report, no. 1, pages 421-444.
Infotech, 1971. http://bwlampson.site/07-ReliableOS/07-
ReliableOSAbstract.htm
32. Butler W. Lampson, “An Overview of the CAL Time-

Sharing System”. October 10, 1969. Includes versions of
[31] and [20], [2], 691010-overview-bwl.

33. B. W. Lampson, “Dynamic protection structures,” in Pro-
ceedings of the Fall Joint Computer conference, Asso-
ciation for Computing Machinery, New York, pp. 27-38.
https://doi.org/10.1145/1478559.1478563

34. Butler W. Lampson and Howard E. Sturgis, “Re-
flections on an operating system design,” Comm. of
the ACM, vol. 19, no. 5, pp. 251-265, January 1976.
https://doi.org/10.1145/360051.360074

35. Butler W. Lampson, interviewed by Paul McJones and
Dave Redell, April 25, 2021.

36. Bruce Gilbert Lindsay, “Exception Processing in Com-
puter Systems, PhD dissertation, Dept. of Computer
Science, University of California, Berkeley, CA, 1977, [2],
77-thesis-bgl.

37. Karl Malbrain and Paul McJones, “COOL-AID,” 1969,

[2], 69-cool-aid-km-prm.

11

12

38. Karl Malbrain?, “Batch system,” [June 19707], [2], 7006-
batch-system-km.

39. E. W. Mauchlan, “Note for Regents’ Committee on
Finance, July 15, 1966: Upgrading of Computer System
and Authorization to Submit Grant Application for Com-
puter,” [1], Box 77, Folder 1.

40. E. W. Mauchlan, L. L. Sammet, and D. R. Willis,
memo to Chancellor Bowker re Computer Center fund-
ing, November 12, 1971, [1], Box 121, Folder 12.

41. Paul McJones, “CAL SNOBOL archive,” web site, 2021-
2022. https://www.mcjones.org/CAL_SNOBOL/

42. Special issue on time-sharing at MIT, IEEE Annals of
the History of Computing, vol. 14, no.1, January/March
1992.

43. Calvin C. Moore, Mathematics at Berkeley: A History,
Wellesley, MA: A K Peters, 2007.

44. James H. Morris, Jr., Thoughts of a Reformed Computer
Scientist: On the Nature of Real and Atrtificial Intelligence,
Amazon, ISBN 9798492652494, 2021.

45. James H. Morris, Jr., “The Idiot's Guide to TSS,” Fall
1970, [2], 7009-idiots-guide-jhm.

46. [James H. Morris, Jr.,] “BCPL,” Section F of Part 4 (Lan-
guages and Processors) of The Cal Computer Center
Users Guide, May 1971, [2], 7105-cal-bcpl-jhm.

47. David D. Redell, “Naming and Protection in Extendible
Operating Systems,” PhD dissertation, Dept. of Com-
puter Science, University of California, Berkeley, CA,
1974, [2], 7409-thesis-ddr.

48. L. L. Sammet, memo to Professor Butler Lampson,
September 17, 1968, [1], Box 121, Folder 9.

49. L.L. Sammet, memo to Acting Director Hebert, Septem-
ber 3, 1969, [1], Box 121, Folder 10.

50. R. N. Schuhmann, letter to Prof. A. H. Taub, May 5,
1966, [1], Box 77, Folder 1.

51. R. N. Schuhmann, letter to Prof. A. H. Taub, October 11,
1968, [1], Box 121, Folder 9.

52. H. Sturgis, memo on an approach to timesharing for the
6400 with ECS, May 4, 1967, [2], 670504-timesharing-
hes.

53. H. Sturgis, memo on a basic timesharing system de-
scribed as an abstract machine, November 15, 1967, [2],
671115-basic-timesharing-hes.

54. H. Sturgis, project plan with cover letter, February 20,
1968, [2], 680220-mhg-to-hes.

55. H. Sturgis. “Capabilities, basic objects,” February 29,
1968, [2], 680229a-basic-objects-hes.

56. H. Sturgis, “Map, operation, capability, objects,” July 14,
1968, [2], 680714-map-oper-capab-hes.

57. H. Sturgis, “Process, subprocess,” July 16, 1968, [2],
680716-proc-subproc-hes.

58. H. Sturgis, ECS layer specification, November 1, 1968,
44 pages. Introduction and 8 numbered sections, [2],
681101-ecs-layer-hes.

59. H. Sturgis, “Interim Disk System: Preliminary Manual,”
[January 1970,] [2], 7001-interim-disk-sys-hes.

60. H. Sturgis, “About Cal TSS,” January 6, 1971. Sturgis’s
first status report, [2], 710106-about-hes.

61. H. Sturgis, “CAL TSS Report,” August 1, 1971. Sturgis’s
second status report, [2], 710801-cal-tss-report-hes.

62. H. Sturgis, “A note on charging,” August 17, 1971, [2],
710817-charging-hes.

63. H. Sturgis, “Postmortem of an operating system,” PhD
dissertation, Dept. of Computer Science, University of
California, Berkeley, CA, 1973, [2], 7401-thesis-hes.

64. A. Taub, “Plans for the Berkeley Computer Center,”
memorandum to Chancellor R. Heyns, April 14, 1966, [1],
Box 77, Folder 1.

65. A. Taub, memo to Vice-Chancellor Alan Searcy,
September 16, [1], Box 77, Folder 1.

66. A.Taub, National Science Foundation Computer Facility
grant proposal, undated (circa fall 1966), [1], Box 77,
Folder 1.

67. Angus Taylor, memo to Chancellor Heyns, January 18,
1971, [1], Box 121, Folder 12.

68. V. Vaughan, “September system,” [June 19707], [2],
7006-sept-sys-vv.

69. V. Vaughan. “Reconstituted list of things to be done on
the ECS level of Cal TSS,” June 1, 1970, [2], 700601-
reconstituted-list-vv.

70. V. Vaughan, “Facilities available,” March 15, 1971, [2],
710315-facilities-avail-vv.

71. V. Vaughan, “CAL Time-Sharing System Status,’
November 29, 1971, [2], 711129-status-vv.

72. David Walden and Tom Van Vieck, eds, Compatible
Time-Sharing System (1961-1973): Fiftieth Anniversary
Commemorative Overview (PDF). IEEE Computer So-
ciety, 2011. https:/multicians.org/thvv/compatible-time-
sharing-system.pdf

73. Edward L. Wilson, “Report to Chancellor’s Advisory
Committee on Computing from Subcommittee on Time
Sharing,” February 27, 1971, [2], 710227-subcommittee-
on-time-sharing-elw.

Paul McJones is retired in Mountain View, California.
Contact him at paul@mcjones.org.

David Redell is retired in Redwood City, California.
Contact him at dave.redell@gmail.com.

	Background
	Acquiring the hardware
	Launching the timesharing project
	Designing the ECS system
	Implementing the ECS system
	The interim system
	First users
	Designing the disk system
	First student users
	The final system
	Aftermath
	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	Biographies
	Paul McJones
	David Redell

